Automatic Rock 'n' Roll Accompaniment Using a Hidden Semi-Markov Model

Overview

- Hidden Markov Models (HMMs) are useful for determining likely chord progressions from melodies
- Duration of chord states is generally ignored
- Solution: Model duration of chord states (in terms of number of note observations) as an extra parameter with the Hidden semi-Markov Model (HSMM)
- Trained on a dataset of expert-transcribed Rock songs

Types of HSMM

- Explicit Duration HSMM

- Transitions are independent of previous state's duration
- No self transitions are allowed
- $\mathrm{a}_{(i)} \rightarrow \mathrm{a}_{(i+1, d)}$
- Variable Time HSMM
- States are encoded separately for each duration
- Self transitions allowed
- States are often encoded uniquely for each duration

$$
\begin{aligned}
& -\mathrm{a}_{(i, d)} \rightarrow \mathrm{a}_{(j, 1)} \\
& -\mathrm{a}_{(i, d)} \rightarrow \mathrm{a}_{(i, d+1)}
\end{aligned}
$$

- Residential Time HSMM
- Residential time, τ, is decided upon entry into the state
- Transitions are independent of previous state's duration
- Self transitions allowed

Derived Model

- Combination of Variable Time HSMM and Explicit duration HSMM
- Self transitions are allowed
- Transitions are independent of previous state's duration
- Each state is a unique chord token, duration is modelled separately
- Viterbi Approximation
- In order to retain realtime capabilities, self transitions are replaced with durational probabilities:

$$
\frac{P(i \mid d+1)}{P(i \mid d)}
$$

Example

Composed Melody
Voice

Observation Encoding for the key of C [in key-relative pitch class]

$$
\begin{aligned}
& 0,2,5,2,9,8,7,5,0,2,5,2,9,8,7,5,0,2,5,2,9 \\
& 8,7,5,0,2,5,2,4,5,11,5,10,9,8,7,5,2
\end{aligned}
$$

Resulting State Sequence [in diatonic roman numerals] $\mathrm{I}, \mathrm{V} / \mathrm{V}, \mathrm{V} / \mathrm{N}, \mathrm{V} / \mathrm{V}, \mathrm{V} / \mathrm{V}, \mathrm{V} / \mathrm{V}, \mathrm{V}, \mathrm{V}, \mathrm{I}, \mathrm{IV}$, $\mathrm{I}, \mathrm{IV}, \mathrm{I}, \mathrm{V} / \mathrm{V}, \mathrm{V}, \mathrm{V}$, I, IV, V, V, I, IV, IV, I, IV, I

Resulting State Sequence aligned to initial melody input

Future Work

- Encode duration with each note to remove duration abstraction
- Add transition dependencies on duration of previous state
- Perform large-scale evaluation

